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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

A simple theory for the densities of coexistent liquid and 
vapour through the transition region 

NI. V. BERRY and S. R. REZNEK 
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 ITL, England 

iWS. received 20th July 1970 

Abstract. The two-particle distribution function for a system of liquid and 
vapour in equilibrium is approximated by the product n(zl)n(zz)g( lrz - v l  I), 
where the radial distribution function g is taken to be that of the liquid. The 
Born-Green-Yvon equation for the density n(z)  is solved, giving the form of 
the interface between liquid and vapour as well as a relation between their 
densities n L  and nv. 

The relation between the densities is shown to be consistent with experi- 
mental results. Further, when this relation is combined with the demand that 
the pressures in the two phases be equal, it is shown that the empirical scaling 
law nL-nv cc (Tc--T)li3 is a consequence of a simple assumption about the 
approach of the liquid and vapour correlation functions towards equality near 
the critical temperature. 

1. Introduction 
Below the critical temperature a liquid can exist in equilibrium with its vapour, 

the two phases being separated by an interface which is exceedingly thin on a macro- 
scopic scale. 

Over a region comparable with atomic dimensions, however, time-averaged 
quantities, such as density, change smoothly from their liquid to their vapour values. 
The  detailed form of the number density variation (the ‘density profile’) is important 
for the calculation of surface tension and other observable properties of the interface. 

I n  this paper we begin ($  2) by making a simple approximation for the form of the 
two-particle distribution function. This enables the appropriate statistical-mechanical 
equation to be solved for the density profile n ( x ) ,  starting from the liquid value 
nL (at x = - so) and working through the interface (near 2: = 0) into the vapour 
phase (at x = CO) where we predict the density en,. 

Next, in $ 3 ,  we examine more closely the relation between nL and n,, using first 
the additional empirical restriction that the density difference is proportional to 
( T ,  - q1I3. Then we replace this restriction with the requirement that the pressures 
must be equal in the two phases. This leads to a formalism for the complete liquid- 
vapour coexistence curve if we regard the interatomic potential +(R) and the liquid 
and vapour radial distribution functions gL(R) and gv(R) as given functions. The  
theory gives poor predictions for the pressure, which depends very sensitively on the 
precise form of the intermolecular correlations. 

The final part of the article, $4, is devoted to an examination of the coexistence 
curve near to the critical temperature Tc.  We find that the simplest possible assump- 
tion concerning the temperature-dependence of g, and g, implies the well-established 
empirical law that the density difference nL - n, is proportional to ( T, - T)lI3. How- 
ever, there appears to be no simple theoretical argument leading to the ‘law of recti- 
linear diameter’ for nL + n,. 
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2. The density profile 

two points at rl and r z ,  separated by (figure 1) 
We assume that the interface is situated near the plane x = 0, and we consider 

Liquid I 
Figure 1. Basic geometry of interface. 

Then the two-particle density distribution function, which depends not only on the 
separation of the two points but also on their position relative to the interface, can be 
denoted by nz(xl, R ) .  The Born-Green-Yvon (BGY) equation for the density n(x) ,  
an exact relation derivable from equilibrium statistical mechanics (assuming only 
pairwise interactions between the molecules), is given by (Ono and Kondo 1960- 
equation (27.5)) 

where k is Boltzmann’s constant, the primes denote differentiation of functions with 
respect to their arguments and x is the component of R perpendicular to the interface. 

We now introduce our basic approximation: arguing that the densities n(r l )  and 
n( r2)  dominate the behaviour of the two-particle distribution function, and that most 
of the interactions which cause the correlations must occur in the liquid, we write 

nz(21, R )  = 4.1) 4.1 + z)gL(R) * (2) 
We assume that gL(R), and, later g,(R), depend only on T ;  we are neglecting the 
dependence of these functions on the density along the isotherms near the coexistence 
curve. The  relation (2) has also been suggested by Green (1960). 

If we insert (2) into (l), and write the R integration in terms of coordinates R, z 
and an azimuthal angle which integrates out to give a factor 27, we get 

(0 d 

dz, 
d sn (z ,+x)zS  dR+‘(R)gL(R). (3) 

le1 
kT- ln{n(xl)} = 277 

This is a nonlinear integral equation for the density profile, involving the kernel 
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which is an odd function of x and goes to zero when 1x1 exceeds the range of the inter- 
particle force. If we define the even function 

k ( x )  = - I" h(z ' )  dx' 
2 

our integral equation becomes 
m d 

- ln(n(x,)} = / 
dz1 - "  

dz n(zl + z )  A' (%)  

m 

= - / dz n'(zl+z) k ( z )  
- m  

d "  

dzi - m  

- -- / dz  n(xl + x) k(x )  

where we have integrated by parts. This can be integrated to give 

where C is a constant independent of x. 
Our basic relation between liquid and vapour densities will involve the constant 

k ( 2 )  dx = - 4.rr dR R34'(R) gL(R) (8) Km 3kT ,, 
where the last equality comes from (4) and (5) after a little reduction. K ,  is positive 
because the interactions in the condensed liquid phase are dominated by the attractive 
forces, for which +'(I?) is positive. We now equate the asymptotic forms of the right- 
hand side of (7) ,  to get 

KL(T)  = - 

(9) 
exp(KIP,) - - exP(KLnv) C =  

Z L  nv 
For a given temperature, we can plot exp{K,(T)n)/n against n (figure Z), choose a 
liquid density nL (which must exceed l/KL(T)), and read off the corresponding vapour 
density n,. 

Figure 2. Construction relating liquid and vapour densities at a given tempera- 
ture. 
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Knowing the two limiting densities, the profile X ( Z )  can be found by iterating 
equation (7). Starting from a zeroth approximation where the density changes 
suddenly from nL to n, at x = 0, namely 

n(O)(x)  = n,O( - x) + n,O(z) (10) 

(where O(x) is the unit step function), we calculate the mth approximation from 

'x 

dm)(z) = nL expl - KLnL - 1 dz'n("-l)(z + z ' )  k(s')) (11) 1 - a  

which behaves correctly at x = k CO. For a simple analytical approximation it is 
probably sufficient to take the first iteration, 

dz'k(x')(n, - n,) I ' I  is1 3) J n(l)(z)  = n,exp 

According to our theory, the thickness of the transition layer between liquid 
and vapour is comparable with the range of the kernel k(z ) ,  i.e. with the range 
of the interatomic forces. This result should hold right up to the critical point (the 
broadening of the interface to macroscopic dimensions, observed in experiments near 
the critical point, can be interpreted as a gravitational effect-Heller 1967). 

3. The liquid-vapour coexistence curve 
From our equation (9) it is possible to calculate n,  from a given nL, but a second 

equation is necessary in order to determine the single nL for which liquid and vapour 
can coexist at a given temperature. One such relation is the empirical law (Guggenheim 
1945) 

nL-n, 7 '  1 i3 

(13) 

which is satisfied down to about half the critical temperature for a range of substances. 
The combination of (13), (9), and (16) (which we shall prove presently) leads to 

7n,( 1 - T /  TC)1J3 
___-__ 

2[1-exp[-7(KL(T)/2Kc}(1- T/Tc)1/3]]  
7n,(l- T/TC)li3 exp[-7{KL(T)/2K,}(1 - T/Tc)1'3] 

2[1 -exp[- 7(KL(T)/2Kc}(l  - T/T,)1!3]] 

nL(T) = 

nv( T) = 

where subscripts denote quantities which are evaluated at the critical point. These 
two densities are plotted against T in figure 3, together with the curve (Guggenheim 
1945) which best fits the experimental results; we assume for simplicity that the 
liquid radial distribution function is independent of temperature, so that 
KL(r) cc 1/T (cf. equation (8)). It is seen that the curves differ markedly only near 
(but not, of course, at) the critical point, probably because we cannot neglect the T 
dependence of g, in this region. 

An alternative procedure to using the empirical relation (13) to supplement our 
equation (9) is to demand that the densities aL and n, obey the basic equilibrium 
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condition that the liquid and vapour must have the same pressure. In  any homo- 
geneous phase, the pressure is given by (Egelstaff 1967) 

(15) 

I 
/ I '  ! , $  

02 0 6  I O  14 18 2 2  2 6  

n In, 

Figure 3, Comparison of theoretical densities (full line) with experiment (broken 
line). 

The function K( T ) ,  given by (8), is dependent on density n via the radial distribu- 
tion function g ( R ) ,  but our basic assumptions include the neglect of this dependence. 
T o  test the approximation thus involved, we investigate the critical point, for which 

i.e. 
ncK(Tc) = 1. 

I t  is encouraging that this is exactly the relation which must hold for nL and n, to 
be equal according to our theory (equation (9)). For the critical pressure, however, 
we obtain 

p ,  = n,kT,( 1 -4) = &&T, (17) 
whereas the experimental results have 0.292 instead of & for a wide variety of sub- 
stances (Guggenheim 1945). This poor result is an indication of the extreme sensitiv- 
ity of pressure to different assumptions about the interparticle correlations. 

If we equate the vapour and liquid pressures, we get 

nV{ 1 - inv&( 5")) = nL{ 1 - QnLKL( 7')). (18) 
This equation would be exact if K,  and KL were calculated using g, and g L  for the 
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densities nv and nL on the coexistence line at temperature T,  but is actually approxi- 
mate since we are treating Kv( T )  and KL( T )  as independent of density. The  equations 
(9) and (18), with Kv and KL assumed given functions of T ,  constitute a theory from 
which the densities of coexistent liquid and vapour can be calculated for any tempera- 
ture. 

To  emphasize that our theory should not be used to calculate pressures, we elimin- 
ate KL in (18 )  by means of (9),  to give 

This predicted pressure is negative whenever 

a value far exceeded by the ratio of densities commonly observed for coexistent liquid 
and vapour. 

TT'e shall now use the theory defined by equations (9) and (18) to investigate 
conditions near the critical point. 

4. The critical region 

density variables 
It is convenient, when exploring the critical region, to define the dimensionless 

in terms of which our density and pressure equations (9) and (18) become 
eYL eYv 
- = -  
Y L  Y v  

and 

where 

J O  

Near to the critical point, where y L  = yv = 1, the curve eY/y can be replaced by a 
and equation (16) has been used. 

parabola rendered asymmetrical by the addition of a cubic term, and (22) becomes 

+(YL- 1)"HYL- = HYv- 1)"HYv- (25 ) 

y(T)  = l+c(T)  (26)  

Also, the liquid and vapour correlation functions approach one another, so that 

where E(  T )  is a function of unknown form which vanishes at Tc, We can expect E to 
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be positive, because an examination of the factors in the integrands of (24) shows that 
in the integral involving gv the negative (repulsive) region of the force curve is less 
weighted, and the positive (attractive) region more weighted; this means that Kv > KL 
and y > 1, since KL is positive (figure 4). Combining (25), (26) and (23), and letting E 

tend to zero, we obtain, after some careful reduction, the following expressions for the 
dimensionless densities near the critical point : 

1 yL-yv = 2 ( g E y 3  
+(yL +yv) = 1 + )(Q)l!3€2'3 * 

9' I 

Figure 4. Qualitative behaviour of factors in integrals for y(  T). 

When we convert back to actual densities using (21), the first equation in (27) is not 
altered in form near T ,  by the variation of Kc,IK,(T), and we have 

nL( T )  - nv( T )  = 2nc{&( T))1'3. 

If we take the simplest possible variation of €(TI, namely a linear increase with 
temperature below the critical point-a procedure for which there is at present no 
theoretical justification-we obtain precisely the law (13), which is very well con- 
firmed experimentally (see Heller 1967). 

The  question of the variation of the 'diameter' (zL+n,)/2 is more subtle, but a 
simple case occurs if the factor Kc/KL( T )  departs from unity more slowly than € ' I 3  
as we move away from Tc. Then the second equation of (27) has the leading terms 

B(nL + f i V )  = .C{ 1 + )($)"'e( T)'I3). (28) 
If E is linear in T, - T,  as (13) implies, then the diameter departs from the constant 
value n, according to a ( Tc - T)'I3 power law, which contradicts the often-quoted 
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‘law of rectilinear diameter’ (Guggenheim 1945). The  5 power law fits the experi- 
mental data for Argon (Michels et al. 1958) over the range 0*75Tc up to T ,  less well 
than a linear law. In  fact, the maximum deviations from experiment were four times 
greater than the deviations produced by the law of rectilinear diameter, and of opposite 
sign (which suggests that the exponent in the law of the diameter is slightly greater 
than unity). 

5, Conclusions 
We have shown that the BGY equation (1) of statistical mechanics can be solved, 

using the simple approximation (2) for the two-particle density function, to give the 
density profile for a liquid in equilibrium with its vapour. Our theory differs con- 
siderably from the ‘quasi-thermodynamic’ method of Hill (1952), and work is in 
progress aimed at comparing the density profiles produced by the two formalisms. 
This can only be done indirectly, by calculating such quantities as surface tension. 

The  relation (9), between liquid and vapour densities, almost reproduces the 
experimental coexistence curve when supplemented with the empirical relation (1 3 )  
for the temperature dependence of the density difference between liquid and vapour. 

The theory based on the approximation (2) yields poor predictions for pressures, 
but the necessary condition (18) that the vapour and liquid pressures be equal, 
combined with (9), gives some insight into the two empirical laws governing the 
coexistence curve near the critical point. The  ( T ,  - T)1’2 law of (13) emerges as a 
consequence of the liquid and vapour radial distribution functions approaching 
equality linearly with T,-T, but the ‘law of rectilinear diameter’ seems to have no 
such simple origin. 
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